Design of energy absorbing lightweight structures for improved vehicle crashworthiness
Kai Liu • Satyajeet Shinde • Andrés Tovar

Motivation
- The use of vehicle lightweight structure raise safety concerns
- Structures depict Euler buckling under oblique impact
- Current design methods do not allow controlling deformation mode in structures with geometric imperfections

Objectives
- Maximize energy absorption of lightweight vehicle structures
- Design structures for progressive folding under oblique impact
- Control and restrict deformation to near-to-impact end in structures with geometric imperfections

Results

Methodology
- Problem Formulation
 - Objective: Maximum energy absorption
 - Define: Design Domain
 - Boundary Conditions
 - Loading Conditions
 - Material properties
 - Mass constraint
- Optimization
- Testing

Conclusions and Future Work
- Energy absorption maximization in lightweight structures
 - Dynamic, non-linear HCA structural optimization allows non-intuitive lightweight energy absorbing structures to levels no achievable with traditional static, elastic material methods
 - Extrusion manufacturing constraints improve manufacturability but decrease performance
 - Future work includes rapid prototyping with optimized G-code generation and testing
- Progressive folding and near-to-impact deformation
 - Shape optimization of compliant tubular structures avoid Euler buckling under oblique impact
 - Structures depict progressive folding near-to-impact end
 - Future work includes tailoring material properties, microstructure, and localized treatment

Acknowledgement
- This research has been sponsored by Honda R&D Americas