This exam is closed-book.

- You must show ALL of your work for full credit.
 - Please read the questions carefully.
 - Please check your answers carefully.

- Calculators may NOT be used.
 - Please leave fractions as fractions, but simplify them, etc.
 - I do not want the decimal equivalents.

- Cell phones and other electronic communication devices must be turned off and stowed under your desk.

- Please do not write on the backs of the exam or additional pages.
 - The instructor will grade only one side of each page.
 - Extra paper is available from the instructor.

- Please write your name on every page that you would like graded.
1. (10 points) Find the H matrix corresponding to the following transformation: First rotate by $\pi/2$ about the fixed y-axis. Call the new frame F_1. Then translate 7 cm along the current y-axis. Call the new frame F_2. Then rotate by $\pi/4$ about the current z-axis. Call the new frame F_3. Finally translate 5 cm along the fixed z-axis. Call this new frame F_4. Please first evaluate the expression symbolically (i.e. in terms of variables) and then evaluate the resulting expression by substituting the values of the variables.
2. (5 points) If joint J_i is positioned at joint angle $\pi/4$, and link L_i has link length 110 mm, and link twist $\pi/2$, what is A_i?
3. (5 points) Identify the DH parameters for the matrix

\[A_i = \begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 8 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}. \]

Assume that all angle measurements are between 0 and 2\(\pi\).

\[a_i = \]
\[\alpha_i = \]
\[d_i = \]
\[\theta_i = \]
4. (5 points) Give the expression for T_5^3 in terms of the appropriate A_i.

5. (5 points) Give the expression for T_3^5 in terms of the appropriate A_i.
6. (10 points) Using the A_i and the H you just found in problem (1), determine the following. If $p^2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, what are the coordinates of p with respect to the fixed frame?
7. (5 points) Forward kinematics determines the position and orientation of the end effector from which of the following: (Circle all that apply.)

forces on links

joint angles

joint torques

link geometry

link moment of inertia

8. (5 points) What is the definition of a skew symmetric matrix?
9. (10 points) Please select frames of reference F_0, F_1, and F_2 and generate the table of DH parameters. Please place F_0 on the solid surface below the cylinder. If you find you need variables not listed in the diagram, please define and use them.

Figure 1.15: The Seiko RT3300 Robot cylindrical robot. Cylindrical robots are often used in materials transfer tasks. (Photo courtesy of Epson Robots.)
10. (5 points) Starting from Frame F_0, rotate first by θ_1 about the fixed x-axis and then by θ_2 about the current z-axis to orient Frame F_1. Find the rotation matrix representing this transformation.

11. (5 points) Starting from Frame F_0, rotate first by θ_1 about the fixed x-axis and then by θ_2 about the fixed z-axis to orient Frame F_1. Find the rotation matrix representing this transformation.
12. (10 points) A homogeneous transformation H describes a rotation R and a translation d.

(a) Give the expression for H in terms of R and d.

(b) Give the expression for H^{-1} in terms of R and d.
13. (5 points) Determine the singularities of the system whose Jacobian is
\[J_{11} = \begin{bmatrix}
-c_1 d_3 & 0 & -s_1 \\
-s_1 d_3 & 0 & c_1 \\
0 & 1 & 0
\end{bmatrix}. \]

14. (5 points) What is the origin of frame F_1 with respect to frame F_0 if
\[A_1 = \begin{bmatrix}
1 & 0 & 0 & 0 & 6 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 5 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}. \]
15. (10 points) Where \(J_v = [J_{v_1} J_{v_2} \ldots J_{v_n}] \) and \(J_\omega = [J_{\omega_1} J_{\omega_2} \ldots J_{\omega_n}] \), give the expressions for \(J_{v_i} \) and \(J_{\omega_i} \).
Formula Sheet

A set of Basic Homogeneous Transformations that generate $SE(3)$

$$
\text{Trans}_{x,a} = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{Rot}_{x,a} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_\alpha & -s_\alpha & 0 \\ 0 & s_\alpha & c_\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\text{Trans}_{y,b} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{Rot}_{y,\beta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_\beta & 0 & s_\beta \\ -s_\beta & 0 & c_\beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\text{Trans}_{z,c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{Rot}_{z,\gamma} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_\gamma & -s_\gamma & 0 \\ s_\gamma & c_\gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

In the Denavit-Hartenberg (DH) convention, A_i is the product of four basic transformations,

$$
A_i = \text{Rot}_{z,\theta_i} \text{Trans}_{z,d_i} \text{Trans}_{x,a_i} \text{Rot}_{x,\alpha_i}
$$

$$
= \begin{bmatrix} c_\theta_i & -s_\theta_i & 0 & 0 \\ s_\theta_i & c_\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} c_\theta_i & -s_\theta_i & c_{\alpha_i} & s_{\theta_i} \alpha_i & a_i c_{\theta_i} \\ s_\theta_i & c_\theta_i & c_{\alpha_i} & -s_{\theta_i} \alpha_i & a_i c_{\theta_i} \\ 0 & 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & s_{\alpha_i} & 0 & c_{\alpha_i} & d_i \end{bmatrix}
$$