ECE 602 Lumped System Theory Final Syllabus

The chapter and section titles, along with the chapter, section, and page numbers, refer to the textbook, *Linear System Theory and Design*, 4th edition, by Chi-Tsong Chen.

RA = Reading Assignment (reinforces lecture but not covered in lecture). Students are responsible for the material in these sections as well as that in the sections covered in class. Have a question about this material? Email the instructor or ask the assistant.

Lecture 1 Definitions and Notation, Transfer Functions and Linearization

Chapter 1: Introduction .. 1
 (RA): 1.1 Introduction .. 1
 (RA): 1.2 Overview .. 2

Chapter 2: Mathematical Descriptions of Systems 6
 (RA): 2.1 Introduction .. 6
 (RA): 2.2 Causality, Lumpedness, and Time Invariance 7
 2.3 Linear Time-Invariant Systems 11
 2.3.1 Multi-input Multi-output Case 18
 2.4 Linear Time-Varying Systems 19
 2.4.1 Linearization .. 20
 (RA): 2.5 RLC Circuits – Comparisons of Various Descriptions 21
 (RA): 2.6 Mechanical and Hydraulic Systems 30
 (RA): 2.7 Concluding Remarks 48
 2.8 Discrete-Time Linear Time-Invariant (LTI) Systems 40

Lecture 2 Linear Algebra and The Cayley Hamilton Theorem

Chapter 3: Linear Algebra .. 55
 (RA): 3.1 Introduction .. 55
 (RA): 3.2 Basis, Representation, and Orthonormalization 56
 (RA): 3.3 Linear Algebraic Equations 61
 3.4 Similarity Transformations 66
 3.6 Functions of a Square Matrix 75

Lecture 3 Solutions of State Space Initial Value Problems (IVPs)

Chapter 3: Linear Algebra (continued)
 3.5 Diagonal Form and Jordan Form 68
 3.6 Functions of a Square Matrix (continued)

Chapter 4: State-Space Solutions and Realizations 101
 4.1 Introduction ... 101
 4.2 General Solution of CT LTI State Equations 103
Lecture 4 Solving Linear Time Invariant (LTI) State Equations

Chapter 4: State-Space Solutions and Realizations 101
 4.2 General Solution of CT LTI State Equations (continued) 103

Lecture 5 Solving Linear Time-Invariant (LTI) State Equations (continued)

Chapter 4: State-Space Solutions and Realizations (continued)
 4.2 General Solution of CT LTI State Equations (continued) 103
 4.2.1 Discretization ... 106
 4.2.2 General Solution of DT LTI State-Space Equations 108
 4.4 Equivalent State-Space Equations 115
 (RA): 4.4.1 Canonical Forms .. 120

Lecture 6 Solving Linear Time-Invariant (LTI) State Equations (continued)

Chapter 4: State-Space Solutions and Realizations (continued)
 4.6 Solution of Linear Time-Varying (LTV) Equations 133
 4.6.1 Discrete-Time Case ... 138

Lecture 7 Realizations

Chapter 4: State-Space Solutions and Realizations (continued)
 (RA): 4.5 Realizations .. 124
 4.5.1 Multi-input Multi-output Case 128

Lecture 8 Review of Chapters 3 and 4

Lecture 9 BIBO Stability (Zero State Response)

Chapter 3: Linear Algebra (continued)
 3.11 Norms of Matrices .. 93

Chapter 5: Stability ... 149
 5.1 Introduction .. 149
 5.2 Input-Output Stability of LTI Systems 149

Lecture 10 BIBO Stability (Zero State Response) continued

Chapter 5: Stability (continued) .. 149
 5.3 Discrete-Time Case (of Input Output Stability) 158

Lecture 11 Internal Stability (Zero Input Response)

Chapter 5: Stability (continued)
 5.4 Internal Stability ... 163
Lecture 12 Lyapunov Theorem and Stability of LTV Systems

Chapter 3: Linear Algebra (continued)
3.7 Lyapunov Equation .. 84
3.9 Quadratic Form and Positive Definiteness 87

Chapter 5: Stability (continued)
5.5 Lyapunov Theorem .. 166
5.5.1 Discrete-Time Case ... 169
5.6 Stability of LTV Systems ... 172

Lecture 13 Review of Chapter 5

Lecture 14 Controllability of CT LTI Systems

Chapter 6: Controllability and Observability 178
6.1 Introduction ... 178
6.2 Controllability .. 179

Lecture 15 Controllability of DT LTI Systems

Chapter 6: Controllability and Observability (continued)
6.6 Discrete-Time State-Space Equations 205
6.6.1 Controllability to the Origin and Reachability 208

Lecture 16 Observability of CT LTI Systems

Chapter 6: Controllability and Observability (continued)
6.3 Observability .. 188
6.3.1 Observability Indices ... 192
6.6 Discrete-Time State-Space Equations 205

Lecture 17 Controllability Indices

Chapter 6: Controllability and Observability 178
6.2 Controllability continued ... 179
6.2.1 Controllability Indices ... 185

Lecture 18 Controllability and Observability with Sampling

Chapter 6: Controllability and Observability (continued)
6.7 Controllability After Sampling 209

Lecture 19 Kalman Decomposition
Chapter 6: Controllability and Observability (continued)

6.4 Kalman Decomposition .. 194

Lecture 20 Controllability and Observability of LTV Systems

Chapter 6: Controllability and Observability (continued)

6.8 LTV State Equations .. 212

Lecture 21 Review of Chapter 6

Lecture 22 State Feedback

Chapter 8: State Feedback and State Estimators 274

8.1 Introduction ... 274
8.2 State Feedback ... 275

Lecture 23 State Estimators

Chapter 8: State Feedback and State Estimators (continued)

8.4 State Estimator .. 291

Lecture 24 Balanced Realizations

Chapter 3: Linear Algebra .. 55

3.10 Singular-Value Decomposition .. 91
Chapter 7: Minimal Realizations and Coprime Fractions 221

7.4 Balanced Realization .. 237

Lecture 25 Minimal Realizations

Chapter 7: Minimal Realizations and Coprime Fractions (continued)

7.1 Introduction ... 221
7.2 Implications of Coprimeness ... 222
7.2.1 Minimal Realizations ... 226

Lecture 26 Review

Lecture 27 Review

Lecture 28 Review