Discussion of Problem A-6-4

For a system to be completely state controllable and completely observable, its pulse transfer function must not have any pole-zero cancellations. This is shown for the limited case of SISO systems with constant bias in the output described by

\[x(k + 1) = Gx(k) + Hu(k) \]
\[y(k) = Cx(k) + D. \]

We know that the pulse transfer function for this system is

\[F(z) = C(zI - G)^{-1}H + D. \]

Claim: If the above system is completely state controllable and completely observable then there is no pole-zero cancellation in the pulse transfer function \(F(z) \).

Proof: We suppose that the above system is completely state controllable and completely observable and that there is pole-zero cancellation in the pulse transfer function \(F(z) \). Showing that this leads to a contradiction will prove the claim.

In order to obtain an expression for the pulse transfer function, we will take the determinant of both sides of the identity

\[
\begin{bmatrix}
 I & 0 \\
 C(zI - G)^{-1} & 1
\end{bmatrix}
\begin{bmatrix}
zI - G & H \\
-C & D
\end{bmatrix}
= \begin{bmatrix}
zI - G & H \\
0 & F(z)
\end{bmatrix}.
\]

The determinant of a product of square matrices is the product of the determinants of the individual matrices and the first matrix on the left hand side has determinant one, so we have

\[
\begin{vmatrix}
zI - G & H \\
-C & D
\end{vmatrix}
= |zI - G|F(z),
\]

which can be solved for the pulse transfer function

\[
F(z) = \frac{|zI - G|}{|zI - Q|}.
\]

Now we suppose that \(z = z_1 \) is a root of both the numerator and the denominator of the pulse transfer function. Examining the denominator polynomial, we see that it is the characteristic polynomial of the matrix \(G \), so \(z_1 \) is an eigenvalue of \(G \) and has a corresponding eigenvector, which we’ll call \(v_1 \). Next we consider the numerator polynomial. If we define the matrix

\[
Q = \begin{bmatrix}
 G & -H \\
 C & z_1 - D
\end{bmatrix}
\]

then

\[
|z_1I - Q| = \begin{vmatrix}
z_1I - G & H \\
-C & D
\end{vmatrix}.
\]
so Q has a (nonzero) eigenvector q_1 corresponding to eigenvalue z_1. Now we can construct the vector $[v^T \ w^T]^T$ given on page 480. The column vector v consists of the first n elements of q_1 and w is the last element, so

$$0 = [z_1I - Q]q_1 = \begin{bmatrix} z_1I - G & H \\ -C & D \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$ (9)

The proof now proceeds as indicated in the text. We consider two cases: $w = 0$ and $w \neq 0$.

Case $w \neq 0$ From (9),

$$(G - z_1I)v = Hw.$$ (10)

z_1 being a root of the characteristic equation of G, the characteristic polynomial $\phi_G(z)$ can be factored as

$$0 = \phi_G(z) = \hat{\phi}_G(z)(z - z_1)$$ (11)

and by the Cayley-Hamilton theorem we also have that

$$0 = \phi_G(G) = \hat{\phi}_G(G)(G - z_1I).$$ (12)

Thus, post-multiplying by v and using (10) we have

$$0 = \phi_G(G)v = \hat{\phi}_G(G)(G - z_1I)v = \hat{\phi}_G(G)Hw.$$ (13)

Since we assumed $w \neq 0$, we must have $\hat{\phi}_G(G)H = 0$. Now since $\phi_G(G)$ is a matrix polynomial of degree n in G, $\hat{\phi}_G(G)$ is a matrix polynomial of degree $n - 1$ in G, so the matrix polynomial $\hat{\phi}_G(G)H$ is a linear combination of the vectors G^iH where $i \in \{1, 2, \ldots, n - 1\}$. This linear combination being equal to zero, implies that the matrix $M = [H \ G H \ \cdots \ G^{n-1}H]$ does not have full rank and thus the system is not completely state controllable, contradicting our assumption.

Case $w = 0$ In this case, since $q_1 \neq 0$, we must have $v \neq 0$. (In fact, $v = v_1$, the eigenvector of G corresponding to eigenvalue z_1 as defined earlier.) Then (9) simplifies to

$$(z_1I - G)v = 0$$ (14)

$$Cv = 0.$$ (15)

Taking the conjugate transpose we obtain

$$v^*G^* = z_1v^*$$ (16)

$$v^*C^* = 0$$ (17)

hence

$$v^*(G^*)^iC^* = v^*G^*(G^*)^{i-1}C^* = z_1v^*(G^*)^{i-1}C^* = \cdots = z_1^i v^*C^* = 0$$ (18)

and thus

$$v^*[C^* \ G^*C^* \ \cdots \ (G^*)^{n-1}C^*] = 0$$ (19)

so the rank of the observability matrix is less than n and the system is not completely observable, contradicting our assumption.