Discretization of Continuous Time State Space Systems

Suppose we are given the continuous time state space system

\[\dot{x}(t) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) + Du(t) \]

and apply an input that changes only at discrete (equal) sampling intervals. It would be nice if we could find matrices \(G \) and \(H \), independent of \(t \) or \(k \) so that we could obtain a discrete time model of the system,

\[x((k+1)T) = G(T)x(kT) + H(T)u(kT) \]
\[y(kT) = Cx(kT) + Du(kT). \]

We will now determine the values of the matrices \(G \) and \(H \). It will turn out that while they are constant for a particular sampling interval, they depend on the value of the sampling interval, so for that reason I have written them as \(G(T) \) and \(H(T) \) in (3) above.

We start by using the solution of (1) to calculate the values of the state \(x \) at times \(kT \) and \((k+1)T \). These are

\[x((k+1)T) = e^{A(k+1)T}x(0) + e^{A(k+1)T}\int_0^{(k+1)T} e^{-A\tau}Bu(\tau)d\tau \]
\[x(kT) = e^{AkT}x(0) + e^{AkT}\int_0^{kT} e^{-A\tau}Bu(\tau)d\tau. \]

We want to write \(x((k+1)T) \) in terms of \(x(kT) \) so we multiply all terms of (6) by \(e^{AT} \) and solve for \(e^{A(k+1)T}x(0) \), obtaining

\[e^{A(k+1)T}x(0) = e^{AT}x(kT) - e^{A(k+1)T}\int_0^{kT} e^{-A\tau}Bu(\tau)d\tau. \]

Substituting for \(e^{A(k+1)T}x(0) \) in (5) we obtain

\[x((k+1)T) = e^{AT}x(kT) + e^{A(k+1)T}\left[\int_0^{(k+1)T} e^{-A\tau}Bu(\tau)d\tau - \int_0^{kT} e^{-A\tau}Bu(\tau)d\tau\right] \]

which, by linearity of integration, is equivalent to

\[x((k+1)T) = e^{AT}x(kT) + e^{A(k+1)T}\int_{kT}^{(k+1)T} e^{-A\tau}Bu(\tau)d\tau. \]

Next, we notice that within the interval from \(kT \) to \((k+1)T \), \(u(t) = u(kT) \) is constant, as is the matrix \(B \), so we can take them out of the integral to obtain

\[x((k+1)T) = e^{AT}x(kT) + e^{A(k+1)T}\int_{kT}^{(k+1)T} e^{-A\tau}Bu(kT)d\tau \quad \tau \in [kT, (k+1)T). \]

We can take the \(e^{A(k+1)T} \) inside the integral to obtain

\[x((k+1)T) = e^{AT}x(kT) + \int_{kT}^{(k+1)T} e^{A[k(k+1)T-\tau]}Bu(kT) \quad \tau \in [kT, (k+1)T). \]
Now we see that as τ ranges from kT to $(k+1)T$ (the lower to the upper limit of integration) the exponent of e ranges from T to 0. Accordingly, let’s define a new variable $\lambda = (k+1)T - \tau$. Then $d\lambda = -d\tau$ and λ ranges from T to 0 as τ ranges from kT to $(k+1)T$. Thus we have

$$
x((k+1)T) = e^{AT}x(kT) - \int_0^T e^{A\lambda}d\lambda Bu(kT) \quad \lambda \in [0,kT),
$$

or

$$
x((k+1)T) = e^{AT}x(kT) + \int_0^T e^{A\lambda}d\lambda Bu(kT) \quad \lambda \in [0,kT).
$$

We see that in (13) we have written the state update equation exactly in the form of (3) where

$$
G(T) = e^{AT}
$$

(14)

$$
H(T) = \int_0^T e^{A\lambda}d\lambda B,
$$

(15)

so we’re done . . . except that we’d rather not leave the expression for $H(T)$ in the form of an integral. So long as A is invertible, we can easily integrate, using the fact that

$$
\frac{d}{dt}e^{AT} = Ae^{AT} = e^{AT}A
$$

(16)

to obtain

$$
H(T) = A^{-1} \int_0^T A e^{A\lambda}d\lambda B = A^{-1}e^{AT}|_{\lambda=0}B
$$

(17)

$$
= A^{-1}(e^{AT} - I)B = (e^{AT} - I)BA^{-1}.
$$

(18)

Finally, note that while I restricted the value of τ and λ to lie within a single sampling interval, k appears nowhere in the expressions for $G(T)$ and $H(T)$. Our solution to (3) is thus

$$
x(kT) = (G(T))^k x(0) + \sum_{j=0}^{k-1} (G(T))^{k-j-1}H(T)u(jT), \quad k = 1, 2, 3, \ldots
$$

(19)

and we can see that at the sampling instants kT, this has exactly the same value as is obtained using (1). Specifically,

$$
(G(T))^k = (e^{AT})^k = e^{AkT},
$$

(20)

and since the input $u(t)$ is constant on sampling intervals,

$$
e^{AkT} \int_0^{kT} e^{-A\tau} Bu(\tau)d\tau = \sum_{j=0}^{k-1} e^{A(k-j-1)T} A^{-1}(e^{AT} - I)Bu(jT)
$$

(21)

$$
= \sum_{j=0}^{k-1} (G(T))^{k-j-1}H(T)u(jT).
$$

(22)